科研成果

联系我们

地址:江苏省南京市栖霞区仙林大道163号

南京大学仙林校区环境学院A530

邮编:210023

电话:025-89680637 (陆老师)

E-mail: biogeochemnju@163.com

      

2017年(27篇

[28] Chen, Y.; Hua, C. Y.; Jia, M. R.; Fu, J. W.; Liu, X.; Han, Y. H.; Liu, Y.; Rathinasabapathi, B.; Cao, Y.*; Ma, L. Q., 2017. Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environmental Science & Technology.  51, 10387-10395.        

[27]  Li, C.; Zhang, R.; Li, Y.; Zhang, S.; Gao, P.; Cui, X*.; Ma, L. Q., Relative bioavailability and bioaccessibility of PCBs in soils based on a mouse model and Tenax-improved physiologically-based extraction test. Chemosphere 2017, 186, 709-715. 

[26]  Yin, D.; Wang, X*.; Peng, B.; Tan, C.; Ma, L. Q., Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere  2017, 186, 928-937. 

[25] Da, S. E.; Li, S.; de Oliveira, L. M.; Gress, J.; Dong, X.; Wilkie, A. C.; Townsend, T.; Ma, L. Q*., Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios. Journal of Hazardous Materials  2017, 341, 66-74. 

[24]  Cai, C., P. N. Williams*, H. Li, W. Davison, T. J. Wei, J. Luo, Y. G. Zhu, and H. Zhang*. 2017. Development and application of the DGT technique for the measurement of nitrate in soils. Analytical Chemistry. 89(2): 1178–1184.

[23]  Chen, Y., Y. H. Han, Y. Cao, Y. G. Zhu, B. Rathinasabapathi*, and L. Q. Ma*. 2017. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Frontiers in Plant Science. 8: 268, doi: 10.3389/fpls.2017.00268.

[22]  Das, S., L. M. de Oliveira, E. da Silva, L. Q. Ma*. 2017. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis. Chemosphere. 180: 448–454.

[21]  de Oliveira, L. M., D. Suchismita, J. Gress, B. Rathinasabapathi, Y. Chen*, and L. Q. Ma. 2017. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere. 176: 249–254.

[20]  Fu, J. W., X. Liu, Y. H. Han, H. Mei, Y. Cao, L. M. de Oliveira, Y. Liu, B. Rathinasabapathi, Y. Chen*, and L. Q. Ma. 2017. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. Journal of Hazardous Materials. 330: 6875.

[19]  Gu X., Z. Liu, X. Wang, J. Luo*, H. Zhang, W. Davison, L. Q. Ma, and Y. Xue. 2017. Coupling biological assays with diffusive gradients in thin-films technique to study the biological responses of Eisenia fetida to cadmium in soil. Journal of Hazardous Materials . In press. doi: 10.1016/j.jhazmat.2017.06.049.  

[18]  Guan, D. X., J. L. Zheng, J. Luo*, H. Zhang, W. Davison, and L. Q. Ma. 2017. A diffusive gradients in thin-films technique for the assessment of bisphenols desorption from soils. Journal of Hazardous Materials. 331: 321–328.

[17]  Han, Y. H., X. Liu, B. Rathinasabapathi, H. B. Li, Y. Chen*, and L. Q. Ma. 2017. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environmental Pollution. 227: 569577.   

[16]  Han, Y. H., J. W. Fu, P. Xiang, Y. Cao, B. Rathinasabapathi, Y. Chen*, and L. Q. Ma*. 2017. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. Journal of Hazardous Materials. 321: 146–153.

[15Li, H.X. Dong, E. B. da Silva, L. M. de Oliveira, Y. Chen*, and L. Q. Ma*. 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere. 178: 466–478.

[14]  Li,  H. B., J. Li,  D. Zhao, C. Li, X. J. Wang, H. J. Sun, A. L. Juhasz, and L. Q. Ma*.  2017. Arsenic relative bioavailability in rice using a mouse arsenic urinary excretion bioassay and its application to assess human health risk. Environmental Science & Technology. 51(8): 4689–4696.

[13]  Li, K., P. Gao, P.  Xiang, X. Zhang, X. Cui*, and L.  Q. Ma*. 2017. Molecular mechanisms of  PFOA-induced toxicity in animals and humans: Implications for health risks.  Environment  International. 99: 43–54.

[12]  Li, S. W., H. J. Sun, G.  Wang, X. Y. Cui, A. L. Juhasz, H. B. Li*, and L. Q. Ma*. 2017.  Lead relative bioavailability in soils based on different endpoints of a mouse  model. Journal of Hazardous Materials. 326: 94–100.

[11]  Li, S. W., X. Liu, H. J. Sun, M. Y. Li, D. Zhao, J. LuoH. B. Li*, and L. Q. Ma. 2017Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. Journal of Hazardous Materials. 339: 256263.

[10]   Liu, X., J. W. Fu, N. Tang, E. B. da Silva, Y. Cao, B. L. Turner, Y. Chen*, and L. Q. Ma. 2017. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environmental Pollution. 226: 212–218.

[9]  Liu,  X.,  J.  W.  Fu,  E. Da Silva, X. X. Shi, Y. Cao, B.  Rathinasabapathi,  Y.   Chen*, and   L. Q. Ma. 2017. Microbial  siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by  As-hyperaccumulator Pteris vittata. Environmental  Pollution. 223: 230237.

[8]  Wang, N., X. M. Xue, A. L. Juhasz, Z. Z. Chang*, and H. B. Li*. 2017. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environmental Pollution. 220: 514–522.

[7]  Wang, N., Z. Z. Chang*, X. X. Xue, J. G. Yu, X. X., Shi, L. Q. Ma, and H. B. Li*. 2017. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Science of the Total Environment. 581–582: 689–696.

[6]  Xiang, P., R. Y. Liu, C. Li,  P. Gao, X. Y. Cui*, and L. Q. Ma*. 2017. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells:  Implications for human health. Environmental Pollution. 230: 2230.

[5]  Xiang, P., R. Y. Liu, H. J. Sun, Y. W. Yang, X.  Y. Cui*, and L. Q. Ma*. 2017. Effects of novel brominated flame retardant TBPH and its metabolite TBMEHP to human vascular endothelial cells: Implication for human health risks. Environmental Research. 156: 834–842.

[4]  Yang, G. M.*, L. J. Zhu, Y.  H. Han,  Y. Teng, and P. Christie. 2017.  Accumulation and speciation of arsenic in the gametophytes and seedlings of  Pteris  vittata:  Effects of calcium and phosphorus. Pedosphere.  27(1), in press.

[3]  Zhang, S., P. N. Williams, C. Y. Zhou, L. Q. Ma, and J. Luo*. 2017. Extending the functionality of the slurry ferrihydrite-DGT method: Performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water. Chemosphere184: 812–819.

[2]  Zhang, S., C. Li, Y. Li, R. Zhang, P. Gao, X. Cui*, and L. Q. Ma. 2017. Bioaccessibility of PAHs in contaminated soils: Comparison of five in vitro methods with Tenax as a sorption sink. Science of The Total Environment. 601–602: 968–974.

[1]  Zhao, D.R. Y. Liu, P. Xiang, A. L. Juhasz, L. Huang, J. Luo, H. B. Li*, and L. Q. Ma. 2017. Applying cadmium relative bioavailability to assess dietary intake from rice to predict cadmium urinary excretion in nonsmokers. Environmental Science & Technology. 51(12): 6756–6764.