陈焱山 副研究员

来源:南京大学生物地球化学与环境修复团队发布时间:2016-08-23编辑:陈焱山



陈焱山

副研究员

邮件:chenyanshan@nju.edu.cn

办公室:钱盘生楼B532

电话:025–89680637



教育背景

2007/09–2013/12     中国科学院植物研究所    发育生物学专业    理学博士(硕博连读)

2003/09–2007/07     北京林业大学                    生物技术专业        理学学士


工作经历

2016/01–至今         南京大学环境学院    副研究员

2014/01–2005/12    南京大学环境学院    博士后 


研究兴趣

蜈蚣草砷富集的分子机制

植物重金属代谢的分子机理

重金属污染的植物修复

植物砷磷吸收及代谢


发表论文

[25] Chen, Y.; Hua, C. Y.; Jia, M. R.; Fu, J. W.; Liu, X.; Han, Y. H.; Liu, Y.; Rathinasabapathi, B.; Cao, Y.*; Ma, L. Q., 2017. Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environmental Science & Technology. 51, 10387-10395.

[24] Han, Y. H.; Jia, M. R.; Liu, X.; Zhu, Y.; Cao, Y.; Chen, D. L.; Chen, Y.*; Ma, L. Q., 2017. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. Chemosphere. 186, 599-606.

[23]  Han, Y. H., X. Liu, B. Rathinasabapathi, H. B. Li, Y. Chen*, and L. Q. Ma. 2017. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environmental Pollution. 227: 569577.

[22]  Liu, X., J. W. Fu, N. Tang, E. B. da Silva, Y. Cao, B. L. Turner, Y. Chen*, and L. Q. Ma. 2017. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environmental Pollution. 226: 212–218.

[21]  Li, H., X. Dong, E. B. da Silva, L. M. de Oliveira, Y. Chen*, and L. Q. Ma*. 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere. 178: 466–478.

[20]  de Oliveira, L. M., D. Suchismita, J. Gress, B. Rathinasabapathi, Y. Chen*, and L. Q. Ma*. 2017. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere. 176: 249–254.

[19]  Chen, Y., Y. H. Han, Y. Cao, Y. G. Zhu, B. Rathinasabapathi*, and L. Q. Ma*. 2017. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Frontiers in Plant Science. 8: 268, doi: 10.3389/fpls.2017.00268.

[18]  Fu, J. W., X. Liu, Y. H. Han, H. Mei, Y. Cao, L. M. de Oliveira, Y. Liu, B. Rathinasabapathi, Y. Chen*, and L. Q. Ma. 2017. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. Journal of Hazardous Materials. 330: 6875.

[17]  Liu, X., J. W. Fu, E. Da Silva, X. X. Shi, Y. Cao, B. Rathinasabapathi, Y.  Chen*, and  L. Q. Ma. 2017. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environmental Pollution. 223: 230237.

[16]  Han, Y. H., J. W. Fu, P. Xiang, Y. Cao, B. Rathinasabapathi, Y. Chen*, and L. Q. Ma*. 2017.  Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic  oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. Journal of Hazardous Materials. 321: 146153.

[15]  Liu, X., J. W. Fu, D. X. Guan, Y. Cao, J. Luo, B. Rathinasabapathi, Y. Chen*, and L. Q. Ma*. 2016. Arsenic induced phytate exudation, and promoted FeAsO4 dissolution and plant growth in As-hyperaccumulator Pteris vittata. Environmental Science & Technology. 50(17): 9070–9077.

[14]  de Oliveria, L. M., J. Gress, J. De, B. Rathinasabapathi, G. Marchi, Y. Chen*, and L. Q. Ma*. 2016. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere. 147: 3643.

[13]  Chen, Y., J. W. Fu, Y. H. Han, B. Rathinasabapathi, and L. Q. Ma*. 2016. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere. 144: 21892194.

[12]  He, Z.#, H. Yan#, Y. Chen#, H. Shen, W. Xu, H. Zhang, L. Shi,Y. G. Zhu*, and M. Ma*. 2016. An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist. 209(2): 746–761. (Co–first authors)

[11]  Chen, Y. S., Y. H. Han, B. Rathinasabapathi, and L. Q. Ma*. 2015.  Naming and functions of ACR2, arsenate reductase, and ACR3 arsenite  efflux transporter in plants (correspondence on: Kumar, S., Dubey, R.S.,  Tripathi, R.D., Chakrabarty, D., Trivedi, P.K., 2015. Omics and  biotechnology of arsenic stress and detoxification in plants: current  updates and prospective. Environ Int. 74:221–230.). Environment International. 81: 98–99.

[10]  Chen, Y., W. Xu, H. Shen, H. Yan, W. Xu, Z. He, and M. Ma*. 2013. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environmental Science & Technology. 47(16): 93559362.

[9]  Han, Y. H., J. W. Fu, Y. Chen, B. Rathinasabapathi, and L. Q. Ma*. 2016. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria. Chemosphere. 144: 1937–1942.

[8]  Xu, J. Y., Y. H. Han, Y. Chen, L. J. Zhu, and L. Q. Ma*. 2016.  Arsenic transformation and plant growth promotion characteristics of  As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere. 144: 1233–1240.

[7]  Han, Y. H., G. M. Yang, J. W. Fu, D. X. Guan, Y. Chen, and L. Q. Ma*. 2016. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock. Chemosphere. 149: 366–372.

[6]  Tisarum, R., Y. Chen, X. Dong, J. T. Lessl, and L. Q. Ma*. 2015. Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor. Environmental Pollution. 206: 4955.

[5]  Xu, W., W. Dai, H. Yan, S. Li, H. Shen, Y. Chen, H. Xu, Y. Sun, Z. He, and M. Ma*. 2015. Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Molecular Plant. 8(5): 722733.

[4]  Shen, H., Z. He*, H. Yan, Z. Xing, Y. Chen, W. Xu, and M. Ma. 2014. The fronds tonoplast quantitative proteomic analysis in arsenic hyperaccumulator Pteris vittata L. Journal of Proteomics. 105: 4657.

[3]  Zhao, Z., Y. Chen, W. Xu*, and M. Ma. 2013. Surface plasmon resonance detection of transgenic Cry1Ac cotton (Gossypium spp.). Journal of Agricultural and Food Chemistry. 61(12): 29642969.

[2]  Ma, W., W. Xu, H. Xu, Y. Chen, Z. He, and M. Ma*. 2010. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta. 232(2): 325335.

[1]  韩永和, 贾梦茹, 傅景威, 向萍, 史孝霞, 崔昕毅, 罗军, 陈焱山*.  2017.  不同浓度砷酸盐胁迫对蜈蚣草根际微生物群落功能多样性特征的影响. 南京大学学报(自然科学版). 53(2): 275–285.


主持/参与科研项目

[1]  国家自然科学基金青年科学基金项目(21707068): 蜈蚣草不同ACR3亚砷酸逆转运蛋白的功能研究和比较, 2018/01–2020/12, 24万元,在研, 主持;              

[2]  江苏省自然科学基金青年项目(BK20160649): 蜈蚣草关键砷外排基因的植物功能研究及其在降低粮食作物砷积累中的应用, 2016/07–2019/06, 20万元, 在研, 主持;

[3]  国家重点研发计划(2016YFD0800801)子课题: 蜈蚣草砷代谢关键基因克隆及转基因工程植物培育, 2016/01–2020/12, 75万元, 在研, 主持;

[4]  国家自然科学基金重点项目(21637002): 土壤–水稻体系中砷迁移与阻控及其健康风险研究, 2017/01–2021/12, 在研, 291万元, 在研, 参与;

[5]  污染控制与资源化国家重点实验室导向性研究课题: 土壤–水稻中砷的人体健康风险评价与调控研究, 2016/082020/07, 80万元, 在研, 参与;

[6]  中国博士后科学基金(2015M571735):  蜈蚣草高效亚砷酸外排蛋白的作用机理研究, 2015/05–2015/12, 5万元, 已结题, 主持;

[7]  江苏省博士后科研资助计划(1402004C): 蜈蚣草不同亚砷酸逆转运蛋白ACR3的基因功能研究及应用, 2014/11– 2015/12, 2万元, 已结题, 主持;